WAVELET BASED DENOISIONG OF ACOUSTIC SIGNAL
نویسندگان
چکیده
منابع مشابه
Wavelet - Based Statistical Signal
Wavelet-based statistical signal processing techniques such as denoising and detection typically model the wavelet coeecients as independent or jointly Gaussian. These models are unrealistic for many real-world signals. In this paper, we develop a new framework for statistical signal processing based on wavelet-domain hidden Markov models (HMMs). The framework enables us to concisely model the ...
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملWavelet based acoustic detection of moving vehicles
We propose a robust algorithm to detect the arrival of a vehicle of arbitrary type when other noises are present. It is done via analysis of its acoustic signature against an existing database of recorded and processed acoustic signals. To achieve it with minimum number of false alarms, we combine a construction of a training database of acoustic signatures signals emitted by vehicles using the...
متن کاملWavelet - Based Statistical Signal Processing
Wavelet-based statistical signal processing techniques such as denoising and detection typically model the wavelet coeecients as independent or jointly Gaussian. These models are unrealistic for many real-world signals. In this paper, we develop a new framework based on wavelet-domain hidden Markov models (HMMs). The framework enables us to concisely model the statistical dependencies and nonGa...
متن کاملThe Acoustic Emission Signal Recognition based on Wavelet Transform and RBF Neural Network
The acoustic emission (AE) technology can be used to assess the security condition of oil storage tank without opening pot. Signal recognition is a foundation to analyze the corrosion status for oil storage tanks. Because of inadequateness of the analysis method of parameters, a new acoustic emission signal recognition method is proposed based on wavelet transform and RBF neural network. AE sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Research in Engineering and Technology
سال: 2014
ISSN: 2321-7308,2319-1163
DOI: 10.15623/ijret.2014.0306089